References

Cromer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Lundt, I. & Madsen, R. (1992). Synthesis, pp. 1129-1132.

- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Rao, S. T., Westof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Søtofte, I. (1994). Acta Cryst. C50, 938-941.

Acta Cryst. (1994). C50, 945-946

Diethyl (2,3-Dihydro-2-oxo-3indolylidene)propanedioate

J. ZUKERMAN-SCHPECTOR

Instituto de Física e Química de São Carlos, Universidade de São Paulo, Caixa Postal, 369, 13560 São Carlos SP, Brazil

Angelo Da C. Pinto, J. F. M. Da Silva and M. T. F. C. Barcellos

Instituto de Química, Universidade Federal de Rio de Janeiro, Cidade Universitária, Rio de Janeiro RJ, Brazil

S. S. PIRES AND S. V. FRAIZ JR

Departamento de Química, Instituto de Ciêcias Exatas, Universidade Federal Rurual do Rio de Janeiro, Rio de Janeiro RJ, Brazil

(Received 21 May 1993; accepted 15 October 1993)

Abstract

The 3*H*-indole-2(1*H*)-one moiety of $C_{15}H_{15}NO_5$ is essentially planar, the C(2)—C(3) distance being 1.510 (7) Å. The molecules are linked through hydrogen bonds forming isolated dimers.

Comment

The study of the structural features of isatin (1), (Palenik, Koziol, Katritsky & Fan, 1990) and some of its derivatives such as (2) (Zukerman-Schpector, Castellano, Pinto, Da Silva & Barcellos, 1992) and (3) (Zukerman-Schpector, Pinto, Da Silva & Barcellos, 1993) led to the observation that the

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved C(2)—C(3) bond length is, in these cases, significantly longer than the values of 1.48 and 1.50 Å expected for C_{sp^2} — C_{sp^2} and C_{sp^2} — C_{sp^3} single bonds, respectively. In the present structure (4), the C(2)— C(3) distance of 1.510 (7) Å is within the expected range for a C_{sp^2} — C_{sp^2} bond, showing that the diethylcarboxy-methylene group bonded to C(3) does not affect the C(2)—C(3) bond length, as do the carbonyl O atoms in (1) and (2), and the Cl atoms in (3).

The 3*H*-indole-2-one moiety is essentially planar: $\sigma_{av} = 0.014 \text{ Å} \quad [\sigma_{av} = (\sum_i d_i^2/N - 3)^{1/2}].$ The main interaction determining the packing of the molecules in the crystal is a hydrogen bond: N—H(N) 1.036 (4), N…O(2ⁱ) 2.878 (6), O(2ⁱ)—H(N) 1.880 (4) Å, N—H(N)…O(2ⁱ) 160.9 (3)° [symmetry code: (i) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$].

Fig. 1. The molecular structure of $C_{15}H_{15}NO_5$ showing the atom labelling. 50% displacement ellipsoids are shown for non-H atoms.

Experimental

Crystal data C₁₅H₁₅NO₅ $M_r = 289.29$ Monoclinic $P2_1/c$ a = 8.674 (1) Å b = 13.293 (1) Å c = 12.670 (3) Å $\beta = 92.55$ (2)° V = 1459.3 (6) Å³ Z = 4 $D_x = 1.32$ Mg m⁻³

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 9-21^{\circ}$ $\mu = 0.093$ mm⁻¹ T = 292 K Irregular 0.38×0.10 mm Red Crystal source: from ethanol

Acta Crystallographica Section C ISSN 0108-2701 ©1994

C15H15NO5

Data collection	
Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: empirical (<i>DIFABS</i> ; Walker & Stuart, 1983) $T_{min} = 0.64, T_{max} = 1.44$ 2147 measured reflections 2052 independent reflections	1136 observed reflections $[I > 3\sigma(I)]$ $R_{int} = 0.021$ $\theta_{max} = 25^{\circ}$ $h = -10 \rightarrow 10$ $k = 0 \rightarrow 15$ $l = 0 \rightarrow 15$ 2 standard reflections frequency: 30 min intensity variation: $\pm 1.1\%$
Refinement	
R = 0.060 wR = 0.067 S = 2.06 1136 reflections 192 parameters	$(\Delta/\sigma)_{max} = 0.004$ $\Delta\rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$ Atomic scattering factors from SHELX76

Table	1.	Fractiona	l	atomic	cod	ordinates	and	$l \epsilon$	equivalent
isotropic displacement parameters $(Å^2)$									

(Sheldrick, 1976)

Only H-atom U's refined

 $w = 1/[\sigma^2(|F_o|) + 0005|F_o|^2]$

$B_{eq} =$	$(4/3)\Sigma_i\Sigma_i$	$_{j}\beta_{ij}\mathbf{a}_{i}.\mathbf{a}_{j}.$
------------	-------------------------	--

	x	у	z	Beg
N	0.9897 (5)	-0.1691 (3)	0.3651 (4)	5.5 (2)
O(1)	1.0093 (4)	-0.0953 (3)	0.2030 (3)	5.9 (2)
O(2)	0.9191 (5)	0.1227 (3)	0.1327 (3)	6.9 (2
O(3)	0.7406 (4)	0.0022 (3)	0.1071 (3)	5.6 (1
O(4)	0.6906 (6)	0.1612 (4)	0.4119 (4)	9.9 (2
O(5)	0.6467 (6)	0.1944 (3)	0.2454 (3)	10.0 (2)
C(2)	0.9580 (6)	0.0984 (4)	0.2909 (5)	4.7 (2
C(3)	0.8522 (6)	-0.0224 (3)	0.3388 (4)	4.3 (2
C(4)	0.7464 (7)	-0.0247 (4)	0.5306 (4)	5.8 (2)
C(5)	0.7482 (8)	-0.0803 (6)	0.6230 (5)	7.2 (3)
C(6)	0.8374 (8)	-0.1685 (5)	0.6319 (5)	7.0 (3
C(7)	0.9194 (7)	-0.2026 (4)	0.5495 (5)	6.2 (2)
C(8)	0.9150 (6)	0.1478 (4)	0.4586 (4)	4.6 (2)
C(9)	0.8317 (6)	-0.0572 (4)	0.4464 (4)	4.5 (2)
C(10)	0.7956 (6)	0.0547 (4)	0.2804 (4)	4.2 (2)
C(11)	0.8291 (7)	0.0637 (4)	0.1665 (4)	4.8 (2)
C(12)	0.7697 (8)	0.0033 (6)	-0.0048 (5)	8.0 (3
C(13)	0.6702 (9)	-0.0786 (6)	-0.0561 (5)	9.5 (3
C(14)	0.7046 (8)	0.1390 (4)	0.3210 (5)	6.2 (2)
C(15)	0.568 (1)	0.2870 (7)	0.2750 (8)	13.3 (5
C(16)	0.515(1)	0.3331 (8)	0.1908 (9)	15.1 (6

Table 2. Selected geometric parameters (Å, °)

	0	-	
N-C(2)	1.349 (7)	N-C(8)	1.404 (7)
O(1) - C(2)	1.218 (7)	O(2)—C(11)	1.199 (7)
O(3)—C(11)	1.331 (7)	O(3)—C(12)	1.451 (7)
O(4)-C(14)	1.200 (8)	O(5)—C(14)	1.292 (8)
O(5)-C(15)	1.46 (1)	C(2)—C(3)	1.510 (7)
C(3)—C(9)	1.458 (7)	C(3)—C(10)	1.344 (7)
C(4)—C(5)	1.384 (8)	C(4)—C(9)	1.394 (8)
C(5)—C(6)	1.41 (1)	C(6)—C(7)	1.366 (9)
C(7)—C(8)	1.362 (8)	C(8)C(9)	1.409 (7)
C(10)-C(11)	1.489 (7)	C(10)—C(14)	1.476 (8)
C(12)—C(13)	1.52 (1)	C(15)—C(16)	1.30 (1)
C(2)-N-C(8)	111.1 (4)	C(11) - O(3) - C(12)	115.2 (4)
C(14) - O(5) - C(15)	117.4 (6)	N-C(2)-O(1)	126.1 (5)
N - C(2) - C(3)	107.1 (4)	O(1) - C(2) - C(3)	126.7 (5)
C(2) - C(3) - C(9)	105.4 (4)	C(2) - C(3) - C(10)	120.2 (4)
C(9) - C(3) - C(10)	134.4 (5)	C(5) - C(4) - C(9)	119.7 (5)
C(4) - C(5) - C(6)	119.9 (6)	C(5) - C(6) - C(7)	121.2 (6)
C(6) - C(7) - C(8)	118.2 (6)	N-C(8)-C(7)	127.5 (5)
N-C(8)-C(9)	109.5 (4)	C(7)—C(8)—C(9)	123.0 (5)
C(3)—C(9)—C(4)	135.1 (5)	C(3)C(9)C(8)	106.9 (4)
C(4) - C(9) - C(8)	117.9 (5)	C(3) - C(10) - C(11)	120.8 (4)

©1994 International Union of Crystallography Printed in Great Britain – all rights reserved

C(3) - C(10) - C(14)	125.1 (5)	C(11) - C(10) - C(14)	114.0 (4)
O(2) - C(11) - O(3)	124.6 (5)	O(2)-C(11)-C(10)	123.8 (5)
O(3) - C(11) - C(10)	111.5 (4)	O(3)-C(12)-C(13)	106.9 (5)
O(4) - C(14) - O(5)	121.2 (6)	O(4) - C(14) - C(10)	126.8 (6)
O(5) - C(14) - C(10)	111.7 (5)	O(5)-C(15)-C(16)	109.8 (9)

Data were corrected for Lorentz, polarization and absorption effects. The structure was solved by direct methods. Refinement was by full-matrix least squares. H atoms were included as fixed contributors; those of the 3H-indole-2(1H)-one moiety were found in difference synthesis and the remaining H atoms were placed in calculated positions. Two overall isotropic temperature factors were refined, one for each group of H atoms. Programs used were: *SHELXS86* (Sheldrick, 1985), *SHELX*-76 (Sheldrick, 1976) and *ORTEP* (Johnson, 1965).

This work has received partial support from CNPq, FAPESP, CAPES and FINEP.

Lists of structure factors, anisotropic displacement parameters and Hatom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71756 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: LI1067]

References

- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Palenik, G. J., Koziol, A. E., Katritzky, A. R. & Fan, W.-Q. (1990). J. Chem. Soc. Chem. Commun. pp. 715-716.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Zukerman-Schpector, J., Castellano, E. E., Pinto, A. Da C., Da Silva, J. F. M. & Barcellos, M. T. F. C. (1992). Acta Cryst. C48, 760-762.
- Zukerman-Schpector, J., Pinto, A. Da C., Da Silva, J. F. M. & Barcellos, M. T. F. C. (1993). Acta Cryst. C49, 173–175.

Acta Cryst. (1994). C50, 946-948

1,16-Hexadecanediol, C₁₆H₃₄O₂

NAOTAKE NAKAMURA AND TOSHIYA YAMAMOTO

Department of Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Tojiin-kitamachi, Kita-ku, Kyoto 603-77, Japan

(Received 6 May 1993; accepted 25 October 1993)

Abstract

The crystal structure of the title compound was determined by X-ray diffraction. The skeleton of the molecule is all *trans* and the molecules form a layer